China Custom Hot Sale 22mm Planetary Gear Box/12V 24V DC Motor/High Torque Low Speed Gear Motor/Low Noise car gearbox

Product Description

22mm small gear reduction electric motors

PG22M180 Series
Dia:Ø22×(49.1~59.7)mm
Rated torque:1kg.cm~4kg.cm

Product description

Product name PG22180 series,22mm diameter planet gear motor
Motor type carbon-brush commutator
Gear type Straight gearwheel planet gearhead
Housing material Steel
Geartrain material Steel , Powdered Metal
Bearing at output shaft Sleeve bearing
Lubricant Grease for high-low temperature
Axial play <0.3mm
Radial play <0.05mm(5mm from mounting face)
Rotation direction CW/CCW reversible
Backlash at no-load <1°
Operating temperature range  -40 °C~+100°C
Noise (DB) <55DB measured at 30cm distance
Lifetime  1000+ hours (varies by application)
OEM & ODM Service Available 
Certificate CE,ROHS,SGS,TUV,IATF16949
Encoder 3PPR ,Click ME-180 to see details

Packing and delivery

Fast delivery Date : 1-2 weeks for samples, 3-4 weeks for mass production.

 

 

 

*shockproof foam packing 

* 20pcs each layer
*4 layers each carton

*carton meas.:36*28*18cm 
*80pcs/ctn
*N.W.:18kgs

*G.W.:17.4kgs

*stretch film
*binding tape
*Shipping mark on each carton and pallet

CERTIFICATE

 

FAQ

Q:1.What kind of motors you can provide?

A: For now, we mainly provide permanent magnet brushed dc motors (including vibration motors, low voltage dc motors and high voltage dc motors) with diameter range in 6~80mm and also Dia10~80mm size gear motors.

Q:2. Can you send me a price list?

A: For all of our motors, they are customized based on different requirements like lifetime, noise, voltage, and shaft etc. The price also varies according to annual quantity. So it’s really difficult for us to provide a price list. If you can share your detailed requirements and annual quantity, we’ll see what offer we can provide.

Q:3. What’s the lead time for regular order?

A: For orders, the standard lead time is 35-40 days and this time can be shorter or longer based on different model, period and quantity.

Q:4. Is it possible for you to develop new motors if we can provide tooling cost?

A: Yes. Please kindly share the detailed requirements like performance, size, annual quantity, target price etc. Then we’ll make our evaluation to see if we can arrange or not.

Q:5. Can I get some samples?

A: It depends. If only a few samples for personal use or replacement, I am afraid it’ll be difficult for us to provide because all of our motors are custom made and no stock available if there is no further needs. If just sample testing before the official order and our MOQ, price and other terms are acceptable, we’d love to provide samples.

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction
Layout: Planetary Gear Box
Hardness: Hardened Tooth Surface
Installation: Torque Arm Type
Step: Three-Step
planetary gearbox

Considerations for Selecting Size and Gear Materials in Planetary Gearboxes

Choosing the appropriate size and gear materials for a planetary gearbox is crucial for optimal performance and reliability. Here are the key considerations:

1. Load and Torque Requirements: Evaluate the anticipated load and torque that the gearbox will experience in the application. Select a gearbox size that can handle the maximum load without exceeding its capacity, ensuring reliable and durable operation.

2. Gear Ratio: Determine the required gear ratio to achieve the desired output speed and torque. Different gear ratios are achieved by varying the number of teeth on the gears. Select a gearbox with a suitable gear ratio for your application’s requirements.

3. Efficiency: Consider the efficiency of the gearbox, which is influenced by factors such as gear meshing, bearing losses, and lubrication. A higher efficiency gearbox minimizes energy losses and improves overall system performance.

4. Space Constraints: Evaluate the available space for installing the gearbox. Planetary gearboxes offer compact designs, but it’s essential to ensure that the selected size fits within the available area, especially in applications with limited space.

5. Material Selection: Choose suitable gear materials based on factors like load, speed, and operating conditions. High-quality materials, such as hardened steel or specialized alloys, enhance gear strength, durability, and resistance to wear and fatigue.

6. Lubrication: Proper lubrication is critical for reducing friction and wear in the gearbox. Consider the lubrication requirements of the selected gear materials and ensure the gearbox is designed for efficient lubricant distribution and maintenance.

7. Environmental Conditions: Assess the environmental conditions in which the gearbox will operate. Factors such as temperature, humidity, and exposure to contaminants can impact gear material performance. Choose materials that can withstand the operating environment.

8. Noise and Vibration: Gear material selection can influence noise and vibration levels. Some materials are more adept at dampening vibrations and reducing noise, which is essential for applications where quiet operation is crucial.

9. Cost: Consider the budget for the gearbox and balance the cost of materials, manufacturing, and performance requirements. While high-quality materials may increase initial costs, they can lead to longer gearbox lifespan and reduced maintenance expenses.

10. Manufacturer’s Recommendations: Consult with gearbox manufacturers or experts for guidance on selecting the appropriate size and gear materials. They can provplanetary gearbox

Considerations for Selecting Planetary Gearboxes for Aerospace and Satellite Applications

Selecting planetary gearboxes for aerospace and satellite applications requires careful consideration due to the unique demands of these industries:

  • Weight and Size: Aerospace and satellite systems demand lightweight and compact components. Planetary gearboxes with high power density and lightweight materials are preferred to minimize the overall weight and size of the equipment.
  • Reliability: Aerospace missions involve critical operations where component failure is not an option. Planetary gearboxes with a proven track record of reliability and durability are essential to ensure mission success.
  • High Efficiency: Efficiency is crucial in aerospace applications to optimize power usage and extend the operational life of satellites. Planetary gearboxes with high efficiency ratings contribute to energy conservation.
  • Extreme Environments: Aerospace and satellite systems are exposed to harsh conditions such as vacuum, extreme temperatures, and radiation. Planetary gearboxes need to be designed and tested to withstand these conditions without compromising performance.
  • Precision and Accuracy: Many aerospace operations require precise positioning and accurate control. Planetary gearboxes with minimal backlash and high precision gear meshing contribute to accurate movements.
  • Lubrication: Lubrication plays a vital role in aerospace gearboxes to ensure smooth operation and prevent wear. Gearboxes with efficient lubrication systems or self-lubricating materials are favored.
  • Redundancy and Fail-Safe: Some aerospace systems incorporate redundancy to ensure mission success even in case of component failure. Planetary gearboxes with built-in redundancy or fail-safe mechanisms enhance system reliability.
  • Integration: Planetary gearboxes need to be seamlessly integrated into the overall design of aerospace and satellite systems. Customization options and compatibility with other components are important factors.

Overall, selecting planetary gearboxes for aerospace and satellite applications involves a comprehensive evaluation of factors related to weight, reliability, efficiency, durability, environmental resistance, precision, and integration to meet the unique demands of these industries.

ide insights based on their experience and knowledge of various applications.

Ultimately, the proper selection of size and gear materials is vital for achieving reliable, efficient, and long-lasting performance in planetary gearboxes. Taking into account load, gear ratio, materials, lubrication, and other factors ensures the gearbox meets the specific needs of the application.

Samples:
US$ 25/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

planetary gearbox

Challenges and Solutions for Managing Power Transmission Efficiency in Planetary Gearboxes

Managing power transmission efficiency in planetary gearboxes is crucial to ensure optimal performance and minimize energy losses. Several challenges and solutions are involved in maintaining high efficiency:

1. Gear Meshing Efficiency: The interaction between gears can lead to energy losses due to friction and meshing misalignment. To address this, manufacturers use precision manufacturing techniques to ensure accurate gear meshing and reduce friction. High-quality materials and surface treatments are also employed to minimize wear and friction.

2. Lubrication: Proper lubrication is essential to reduce friction and wear between gear surfaces. Using high-quality lubricants with the appropriate viscosity and additives can enhance power transmission efficiency. Regular maintenance and monitoring of lubrication levels are vital to prevent efficiency losses.

3. Bearing Efficiency: Bearings support the rotating elements of the gearbox and can contribute to energy losses if not properly designed or maintained. Choosing high-quality bearings and ensuring proper alignment and lubrication can mitigate efficiency losses in this area.

4. Bearing Preload: Incorrect bearing preload can lead to increased friction and efficiency losses. Precision assembly and proper adjustment of bearing preload are necessary to optimize power transmission efficiency.

5. Mechanical Losses: Various mechanical losses, such as windage and churning losses, can occur in planetary gearboxes. Designing gearboxes with streamlined shapes and efficient ventilation systems can reduce these losses and enhance overall efficiency.

6. Material Selection: Choosing appropriate materials with high strength and minimal wear characteristics is essential for reducing power losses due to material deformation and wear. Advanced materials and surface coatings can be employed to enhance efficiency.

7. Noise and Vibration: Excessive noise and vibration can indicate energy losses in the form of mechanical inefficiencies. Proper design and precise manufacturing techniques can help minimize noise and vibration, indicating better power transmission efficiency.

8. Efficiency Monitoring: Regular efficiency monitoring through testing and analysis allows engineers to identify potential issues and optimize gearbox performance. This proactive approach ensures that any efficiency losses are promptly addressed.

By addressing these challenges through careful design, material selection, manufacturing techniques, lubrication, and maintenance, engineers can manage power transmission efficiency in planetary gearboxes and achieve high-performance power transmission systems.

China Custom Hot Sale 22mm Planetary Gear Box/12V 24V DC Motor/High Torque Low Speed Gear Motor/Low Noise   car gearbox	China Custom Hot Sale 22mm Planetary Gear Box/12V 24V DC Motor/High Torque Low Speed Gear Motor/Low Noise   car gearbox
editor by CX 2023-08-22