China OEM PMP6.5r120hydraulic Planetary Reduction Gearbox Used for Concrete Trucks, PMP7y120 with Best Sales

Product Description

The PMP6.5R120 Hydraulic Planetary Reduction Gearbox is a sophisticated and high-performance transmission device designed to provide reliable and efficient speed reduction in industrial applications. Incorporating the latest hydraulic technology with planetary gearing design, this gearbox offers unparalleled torque capacity and smooth operation.

The planetary gearing system at the heart of the PMP6.5R120 features multiple rotating gears that work in harmony to provide a significant reduction in speed while multiplying torque. This design ensures even load distribution and minimal wear, resulting in longer service life and superior performance.

The gearbox is equipped with a hydraulic system that provides precise control over the operation. This allows for smooth acceleration and deceleration, as well as fine-tuning of the output speed to meet specific application requirements. The hydraulic system also ensures efficient heat dissipation, preventing overheating and maintaining optimal operating temperatures.

The PMP6.5R120 is built with durability and reliability in mind. Its housing is constructed from heavy-duty materials that can withstand the rigors of industrial use, while the internal components are designed to withstand high loads and speeds. This ensures that the gearbox can perform consistently and reliably even in the harshest environments.

Model NO. PMP6.5R120    Model PMP6.5R120
Lead Time 5 Days Transport Package Standard Export Wooden Case
Colour as Your Request Usage Concrete Mixer
Weight 320KG Specification 56*56*68
Trademark Bodeke Origin China
HS Code 8483457100 Production Capacity 100 Sets/Month

Technical data of Camray CMR conrete mixer gearbox
Model PMP6.5R120 PMP7Y120
Max.Output Torque
Nm
65,000 65,000
Ratio
l=
1:120 1:120
Max.installation angle of Drum 11° 11°
Max.Input speed
rpm
2500 2500
Max.Output speed
rpm
18 18
Max.Capacity of Drum   m³ 8~12 8~12
Weight(without oil)    KG 310 310
Lubrication Oil Quantity  dm³ 11.5 11.5
Max.Misalignmeng of flange +/-6° +/-6°

FAQs about Mixer Truck Speed Reducer

Q1: What is a mixer truck speed reducer?
A1: A mixer truck speed reducer is a mechanical device that reduces the speed of the mixer truck’s motor, increasing torque and allowing for more effective mixing. It helps to transfer power from the motor to the mixer drum more efficiently, ensuring smooth and consistent mixing.

Q2: Why is a speed reducer necessary for mixer trucks?
A2: A speed reducer is necessary for mixer trucks because it matches the speed and torque requirements of the mixer drum to the output of the truck’s motor. By reducing the speed, the reducer amplifies the torque, allowing the mixer drum to rotate at the optimal speed for mixing, while minimizing wear and tear on the motor.

Q3: How does a mixer truck speed reducer work?
A3: A mixer truck speed reducer typically consists of a series of gears or other mechanical components that transfer power from the motor to the mixer drum at a reduced speed. These gears are designed to mesh together, reducing the speed of rotation while increasing torque. This allows the mixer drum to rotate at a slower, more controlled speed, ensuring effective mixing.

Q4: What are the benefits of using a mixer truck speed reducer?
A4: Using a mixer truck speed reducer provides several benefits. It increases the torque output of the motor, allowing the mixer drum to rotate more effectively and mix materials more thoroughly. Additionally, it reduces wear and tear on the motor by matching the speed and torque requirements of the mixer drum, extending the motor’s lifespan. Furthermore, a speed reducer can improve the overall efficiency of the mixer truck, reducing fuel consumption and operational costs.

Q5: How often should a mixer truck speed reducer be maintained?
A5: The frequency of maintenance for a mixer truck speed reducer depends on the specific model and manufacturer’s recommendations. However, generally speaking, it is important to perform regular inspections and lubrication to ensure the reducer is operating smoothly and efficiently. Additionally, if any issues or malfunctions are noticed, it is crucial to address them promptly to prevent further damage or downtime. Regular maintenance can help extend the lifespan of the speed reducer and keep your mixer truck operating at CZPT performance.

Q6: What are the common issues that can arise with mixer truck speed reducers?
A6: Common issues that can arise with mixer truck speed reducers include wear and tear on gears, bearings, and other mechanical components. This can lead to reduced efficiency, increased noise, and ultimately, failure of the reducer. Lubrication issues, such as insufficient or contaminated lubricant, can also cause problems. Regular maintenance and inspection, as well as prompt repair of any issues, are crucial to preventing these common problems and ensuring the reliable operation of the speed reducer.

Q7.Are you manufacturer?  And what’s the delivery time?
A7:Yes, we are manufacturer and have our own factory. Generally, its in stock for common models, 25-30 days will be finished and sent to customer in time.

Q8.If we don’t find what we want on your website, what should we do?
A8: You can email us the descriptions and pictures of the products you need, We will check whether we can make it.

Q9.How about the inspection and Guarantee of products?
A9:We promise: all products are tested before ship, to confirm it will be working and  in good conditions when customers get. Also, we offer 12-month guarantee, if it doesn’t work due to quality issue in the period, we will send spares to repair for free.

Bodeke Industrial Components Co., Ltd. is a leading Chinese company specializing in the manufacturing and maintenance of a wide range of industrial equipment components. Our products find application in diverse sectors, including cement tanker trucks, excavators, rescue equipment for cement trucks, mixers, cranes, hydraulic motors, hydraulic pumps, and other industrial machinery.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machinery
Hardness: Hardened Tooth Surface
Installation: 90 Degree
Layout: Expansion
Gear Shape: Conical – Cylindrical Gear
Step: Double-Step
Samples:
US$ 690/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

planetary gearbox

Concept of Coaxial and Parallel Shaft Arrangements in Planetary Gearboxes

In planetary gearboxes, the arrangement of shafts plays a crucial role in determining the gearbox’s overall structure and functionality. The two common shaft arrangements are coaxial and parallel configurations:

Coaxial Shaft Arrangement: In a coaxial arrangement, the input shaft and output shaft are positioned along the same axis, resulting in a compact and streamlined design. The planetary gears and other components are aligned concentrically around the central axis, allowing for efficient power transmission and reduced space requirements. Coaxial planetary gearboxes are commonly used in applications where space is limited, and a compact form factor is essential. They are often employed in robotics, automotive systems, and aerospace mechanisms.

Parallel Shaft Arrangement: In a parallel arrangement, the input and output shafts are positioned parallel to each other but on different axes. The planetary gears are aligned in a way that allows the power to be transmitted from the input shaft to the output shaft via a combination of meshing gears. This arrangement allows for a larger gear diameter and higher torque transmission capabilities. Parallel planetary gearboxes are often used in applications requiring high torque and heavy-duty performance, such as industrial machinery, construction equipment, and material handling systems.

The choice between coaxial and parallel shaft arrangements depends on the specific requirements of the application. Coaxial configurations are favored for compactness and efficient power transmission, while parallel configurations excel in handling higher torque and heavy loads. Both arrangements offer distinct advantages and are chosen based on factors like available space, torque demands, load characteristics, and overall system design.

planetary gearbox

Maintenance Practices to Extend the Lifespan of Planetary Gearboxes

Proper maintenance is essential for ensuring the longevity and optimal performance of planetary gearboxes. Here are specific maintenance practices that can help extend the lifespan of planetary gearboxes:

1. Regular Inspections: Implement a schedule for routine visual inspections of the gearbox. Look for signs of wear, damage, oil leaks, and any abnormal conditions. Early detection of issues can prevent more significant problems.

2. Lubrication: Adequate lubrication is crucial for reducing friction and wear between gearbox components. Follow the manufacturer’s recommendations for lubricant type, viscosity, and change intervals. Ensure that the gearbox is properly lubricated to prevent premature wear.

3. Proper Installation: Ensure the gearbox is installed correctly, following the manufacturer’s guidelines and specifications. Proper alignment, torque settings, and clearances are critical to prevent misalignment-related wear and other issues.

4. Load Monitoring: Avoid overloading the gearbox beyond its designed capacity. Excessive loads can accelerate wear and reduce the gearbox’s lifespan. Regularly monitor the load conditions and ensure they are within the gearbox’s rated capacity.

5. Temperature Control: Maintain the operating temperature within the recommended range. Excessive heat can lead to accelerated wear and lubricant breakdown. Adequate ventilation and cooling measures may be necessary in high-temperature environments.

6. Seal and Gasket Inspection: Regularly check seals and gaskets for signs of leakage. Damaged seals can lead to lubricant loss and contamination, which can cause premature wear and gear damage.

7. Vibration Analysis: Use vibration analysis techniques to detect early signs of misalignment, imbalance, or other mechanical issues. Monitoring vibration levels can help identify problems before they lead to serious damage.

8. Preventive Maintenance: Establish a preventive maintenance program based on the gearbox’s operational conditions and usage. Perform scheduled maintenance tasks such as gear inspections, lubricant changes, and component replacements as needed.

9. Training and Documentation: Ensure that maintenance personnel are trained in proper gearbox maintenance procedures. Keep comprehensive records of maintenance activities, inspections, and repairs to track the gearbox’s condition and history.

10. Consult Manufacturer Guidelines: Always refer to the manufacturer’s maintenance and servicing guidelines specific to the gearbox model and application. Following these guidelines will help maintain warranty coverage and ensure best practices are followed.

By adhering to these maintenance practices, you can significantly extend the lifespan of your planetary gearbox, minimize downtime, and ensure reliable performance for your industrial machinery or application.

planetary gearbox

Factors to Consider When Selecting a Planetary Gearbox

Choosing the right planetary gearbox for a specific application involves considering various factors to ensure optimal performance and compatibility. Here are the key factors to keep in mind:

  • Load Requirements: Determine the torque and speed requirements of your application. Planetary gearboxes offer different torque and speed ratios, so selecting the appropriate gearbox with the right load capacity is crucial.
  • Ratio: Evaluate the gear reduction ratio needed to achieve the desired output speed and torque. Planetary gearboxes come in various gear ratios, allowing you to customize the output characteristics.
  • Efficiency: Consider the gearbox’s efficiency, as it affects energy consumption and heat generation. Higher efficiency gearboxes minimize power losses during transmission.
  • Size and Compactness: Planetary gearboxes are known for their compact size, but it’s essential to choose a size that fits within the available space while meeting performance requirements.
  • Mounting Configuration: Determine how the gearbox will be mounted in your application. Planetary gearboxes can have different mounting options, including flange, shaft, or foot mountings.
  • Input and Output Types: Select the appropriate input and output shaft configurations, such as male, female, keyed, splined, or hollow shafts, to ensure compatibility with your equipment.
  • Environment: Consider the operating environment, including temperature, humidity, dust, and potential exposure to chemicals. Choose a gearbox with appropriate seals and materials to withstand the conditions.
  • Accuracy: Some applications require precise motion control. If accuracy is essential, choose a gearbox with minimal backlash and high gear mesh quality.
  • Service Life and Reliability: Evaluate the gearbox’s expected service life and reliability based on the manufacturer’s specifications. Choose a reputable manufacturer known for producing reliable products.
  • Backlash: Backlash is the play between gears that can affect positioning accuracy. Depending on your application, you might need a gearbox with low backlash or a method to compensate for it.
  • Budget: Consider your budget constraints while balancing performance requirements. Sometimes, investing in a higher-quality gearbox upfront can lead to long-term cost savings through reduced maintenance and downtime.

By carefully considering these factors and consulting with gearbox manufacturers or experts, you can select a planetary gearbox that best meets the unique demands of your application.

China OEM PMP6.5r120hydraulic Planetary Reduction Gearbox Used for Concrete Trucks, PMP7y120   with Best Sales China OEM PMP6.5r120hydraulic Planetary Reduction Gearbox Used for Concrete Trucks, PMP7y120   with Best Sales
editor by CX 2024-04-12